Abstract

BackgroundEstimating liver function reserve is essential for preoperative surgical planning and predicting post-hepatectomy complications in patients with hepatocellular carcinoma (HCC). We investigated hepatic viscoelasticity quantified by tomoelastography, a multifrequency magnetic resonance elastography technique, to predict liver function reserve.MethodsOne hundred fifty-six patients with suspected HCC (mean age, 60 ± 1 years; 131 men) underwent preoperative tomoelastography examination between July 2020 and August 2021. Sixty-nine were included in the final analysis, and their 15-min indocyanine green retention rates (ICG-R15s) were obtained to determine liver function reserve. Tomoelastography quantified the shear wave speed (c, m/s), which represents stiffness, and loss angle (φ, rad), which represents fluidity. Both were correlated with the ICG-R15. A prediction model based on logistic regression for major hepatectomy tolerance (ICG-R15 ≥ 14%) was established.ResultsPatients were assigned to either the ICG-R15 < 14% (n = 50) or ICG-R15 ≥ 14% (n = 19) group. Liver c (r = 0.617) and φ (r = 0.517) were positively correlated with the ICG-R15 (both p < 0.001). At fibrosis stages F1–2, φ was positively correlated with the ICG-R15 (r = 0.528; p = 0.017), but c was not (p = 0.104). At stages F3–4, c (r = 0.642; p < 0.001) and φ (r = 0.377; p = 0.008) were both positively correlated with the ICG-R15. The optimal cutoffs of c and φ for predicting ICG-R15 ≥ 14% were 2.04 m/s and 0.79 rad, respectively. The area under the receiver operating characteristic curve was higher for c (0.892) than for φ (0.779; p = 0.045).ConclusionsLiver stiffness and fluidity, quantified by tomoelastography, were correlated with liver function and may be used clinically to noninvasively assess liver function reserve and stratify treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.