Abstract

BackgroundNitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture over-simplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge roots' ability to acquire adequate amounts of nutrients required for plant growth. In this study, various ammonium treatments (as 15N) were applied to a discrete volume of soil containing tomato (Solanum lycopersicum) roots to simulate encounters with a localized enriched patch of soil. Transcriptome analysis was used to identify genes differentially expressed in roots 53 hrs after treatment.ResultsThe ammonium treatments resulted in significantly higher concentrations of both ammonium and nitrate in the patch soil. The plant roots and shoots exhibited increased levels of 15N over time, indicating a sustained response to the enriched environment. Root transcriptome analysis identified 585 genes differentially regulated 53 hrs after the treatments. Nitrogen metabolism and cell growth genes were induced by the high ammonium (65 μg NH4+-N g-1 soil), while stress response genes were repressed. The complex regulation of specific transporters following the ammonium pulse reflects a simultaneous and synergistic response to rapidly changing concentrations of both forms of inorganic N in the soil patch. Transcriptional analysis of the phosphate transporters demonstrates cross-talk between N and phosphate uptake pathways and suggests that roots increase phosphate uptake via the arbuscular mycorrhizal symbiosis in response to N.ConclusionThis work enhances our understanding of root function by providing a snapshot of the response of the tomato root transcriptome to a pulse of ammonium in a complex soil environment. This response includes an important role for the mycorrhizal symbiosis in the utilization of an N patch.

Highlights

  • Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter

  • In order to create a nutrient patch and recover roots that were directly exposed to the treatment, pots were prepared with a soil root in-growth core buried 5 cm below the soil surface and subsequently referred to as the patch (Figure 1a)

  • The experimental design consisted of the addition of a high NH4+ treatment (65 μg 15NH4+-N g-1 soil) 100-fold higher than ambient NH4+ levels, a low NH4+ treatment (6.5 μg 15NH4+-N g-1 soil) 10-fold higher than ambient NH4+ levels, and a water treatment to control for any potential mobilization of nutrients that occurs when soil moisture is increased

Read more

Summary

Introduction

Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture oversimplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge roots' ability to acquire adequate amounts of nutrients required for plant growth. Applications of N in conventional agriculture include fertilizer banding to the side of the plants, broadcasting on the surface of soil, and anhydrous ammonia injections. These N application methods as well as localized microbial turnover of organic N can result in spatial and temporal heterogeneity (patchiness) of soil N resulting in non-uniform availability to plant roots.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.