Abstract
Accurate prediction of agricultural prices is beneficial to correctly guide the circulation of agricultural products and agricultural production and realize the equilibrium of supply and demand of agricultural area. On the basis of wavelet neural network, this paper, choosing tomato prices as study object, tomato retail price data from ten collection sites in Hebei province from January, 1st, 2013 to December, 30th, 2013 as samples, builds the tomato price time series prediction model to test price model. As the results show, model prediction error rate is less than 0.01, and the correlation (R2) of predicted value and actual value is 0.908, showing that the model could accurately predict tomatoes price movements. The establishment of the model will provide technical support for tomato market monitoring and early warning and references for related policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.