Abstract
Reactive oxygen species (ROS) are inevitably generated in aerobic organisms as by-products of common metabolism and as the result of defense and development. ROS readily oxidizes methionine (Met) residues of proteins to form Met-R-sulfoxide or Met-S-sulfoxide (MetSO), resulting in protein inactivation or malfunction. Although it is known that MetSO can be reverted to Met by methionine sulfoxide reductase (Msr), the mechanism how Msr interacts with its target proteins is poorly understood. In this study, two target proteins of tomato MsrB2 (SlMsrB2), catalase 2 (CAT2) and the Rubisco small subunit RBCS3B, were identified. Silencing of SlMsrB2 by RNA interference (RNAi) in tomato led to decreased drought tolerance, accompanied by increased ROS accumulation and chlorophyll degradation. By contrast, overexpression of SlMsrB2 in tomato significantly reduced ROS accumulation and enhanced drought tolerance. Protein interaction analysis showed that SlMsrB2 interacts with CAT2 and RBCS3B in vitro and in planta. Silencing of CAT2 by RNAi and RBCS3B by virus-induced gene silencing (VIGS) resulted in development of pale green leaves and enhanced ROS accumulation in tomato plants. These results demonstrate that SlMsrB2 functions in drought tolerance and promotes chlorophyll accumulation by modulating ROS accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.