Abstract
Tomatoes have nutritional content that is very beneficial for human health and is one source of vitamins and minerals. Tomato classification plays an important role in many ways related to the distribution and sales of tomatoes. Classification can be done on images by extracting features and then classifying them with certain methods. This research proposes a classification technique using feature histogram extraction and Naïve Bayes Classifier. Histogram feature extractions are widely used and play a role in the classification results. Naïve Bayes is proposed because it has high accuracy and high computational speed when applied to a large number of databases, is robust to isolated noise points, and only requires small training data to estimate the parameters needed for classification. The proposed classification is divided into three classes, namely raw, mature and rotten. Based on the results of the experiment using 75 training data and 25 testing data obtained 76% accuracy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.