Abstract
Humans depend heavily on agriculture, which is the main source of prosperity. The various plant diseases that farmers must contend with have constituted a lot of challenges in crop production. The main issues that should be taken into account for maximizing productivity are the recognition and prevention of plant diseases. Early diagnosis of plant disease is essential for maximizing the level of agricultural yield as well as saving costs and reducing crop loss. In addition, the computerization of the whole process makes it simple for implementation. In this paper, an intelligent method based on deep learning is presented to recognize nine common tomato diseases. To this end, a residual neural network algorithm is presented to recognize tomato diseases. This research is carried out on four levels of diversity including depth size, discriminative learning rates, training and validation data split ratios, and batch sizes. For the experimental analysis, five network depths are used to measure the accuracy of the network. Based on the experimental results, the proposed method achieved the highest F1 score of 99.5%, which outperformed most previous competing methods in tomato leaf disease recognition. Further testing of our method on the Flavia leaf image dataset resulted in a 99.23% F1 score. However, the method had a drawback that some of the false predictions were of tomato early light and tomato late blight, which are two classes of fine-grained distinction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.