Abstract

An exo-(1-->4)-beta-D-galactanase was isolated from ripe tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig and cv Better Boy) using anion-exchange, gel filtration, and cation-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most active fraction revealed a predominant protein band at 75 kD and several minor bands. A 30-amino acid N-terminal sequence from this 75-kD protein showed a high degree of homology with other recently identified beta-galactosidase/ galactanase proteins from persimmon and apple fruits (I.-K. Kang, S.-G. Suh, K.C. Gross, J.-K. Byun [1994] Plant Physiol 105: 975-979; G.S. Ross, T. Wegrzyn, E.A. MacRae, R.J. Redgwell [1994] Plant Physiol 106: 521-528) and with the predicted polypeptide sequence encoded by the ethylene-regulated SR12 gene in carnation (K.G. Raghothama, K.A. Lawton, P.B. Goldsbrough, W.R. Woodson [1991] Plant Mol Biol 17: 61-71). The enzyme focused to a single band of beta-galactosidase activity on an isoelectrofocusing gel at pH 9.8. The enzyme was specific for (1-->4)-beta-D-galactan substrates with a pH optimum of 4.5. The only reaction product detected was monomeric galactose, indicating that the enzyme was an exo (1-->4)-beta-D-galactanase. beta-Galactanase activity increased at the onset of ripening in normal fruit, but no similar increase was detected in the nonripening mutants nor and rin. A tomato homolog (pTombetagal1) was isolated using the SR12 cDNA clone from carnation as a probe. This clone showed 73% identify at the amino acid level with beta-galactosidase-related sequences from apple and asparagus and 66% identity with SR12. pTombetagal1 is a member of a gene family. Northern analysis demonstrated that pTombetagal1 expression was ripening related in normal fruits, with lower levels apparent in the nonsoftening mutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call