Abstract

Activated autophagy has been intensively observed in cerebrovascular diseases, including focal cerebral ischemia injury, but its molecular mechanisms remain unclear. TOM7, which is a component of the protein translocase of the outer mitochondrial membrane (TOM) complex, may modulate assembly of the TOM complex. However, an understanding of how TOM7 affects cerebral ischemia injury is limited. In this study, we demonstrate that the expression of TOM7 is up-regulated after a photothrombotic cerebral ischemic model in rats, peaking at 3 days. In addition, TOM7 knockdown may aggravate cerebral ischemic injury and inhibit autophagy after ischemic stroke. Mechanically, TOM7 may regulate autophagy through the PINK1/Beclin1 pathway after cerebral ischemia injury. These results demonstrate that TOM7 silencing may aggravate cerebral ischemia injury through inhibiting PINK1/Beclin1 pathway- mediated autophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call