Abstract

Abstract Tar produced during biomass steam reforming is a complex mixture of single to multiple ring aromatic compounds and it is necessary to eliminate them in order to prevent any condensation-polymerisation problem. Tar steam reforming leads to additional hydrogen that improves gas production. Previous works have shown that olivine was active in tar removal during biomass gasification and the iron distribution into the mineral different phases has a real influence on its efficiency. A Fe/olivine catalytic system has been designed to study tar steam reforming. This work presents the Fe/olivine catalyst characterizations (XRD, Mossbauer, TPR) and compares the Fe/olivine and olivine reactivity in toluene steam reforming, a tar model molecule. At 850 °C, an important conversion (95%) was observed for Fe/olivine during 7 h. The strong interaction between iron and olivine, and the equilibrium between Fe 0 /Fe II /Fe III seem to be responsible of the catalyst activity and stability in toluene steam reforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call