Abstract
Commercial solvents such as toluene are commonly used as drugs of abuse by children and adolescents. The cellular and molecular sites and mechanisms of actions of these compounds are not well studied but their effects on behavior resemble those of central nervous system depressants such as alcohol, barbiturates and benzodiazepines. In this study, the effects of toluene on voltage-sensitive calcium channels (VSCCs) were measured in pheochromocytoma cells. The KCl-induced rise in intracellular calcium as measured by calcium imaging was almost completely blocked by the dihydropyridine calcium channel antagonist nifedipine verifying that undifferentiated pheochromocytoma cells express mainly the L-type of calcium channel. Toluene (0.3–3000 μM) by itself did not affect intracellular calcium levels in resting cells but dose-dependently inhibited the KCl-induced rise in calcium. This inhibition was substantially reversed upon washout of the toluene-containing solution. KCl-dependent increases in intracellular calcium in cells differentiated with nerve growth factor (NGF) were largely insensitive to nifedipine. Toluene produced a greater inhibition of the KCl response in NGF treated cells as compared with undifferentiated cells. A similar finding was obtained when whole-cell patch-clamp-electrophysiology was used to directly monitor the effects of toluene on voltage-activated calcium currents in undifferentiated and differentiated cells. These results show that dihydropyridine sensitive and insensitive calcium channels are inhibited by toluene and may represent important sites of action for this compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.