Abstract

Souring in the Medicine Hat Glauconitic C field, which has a low bottom-hole temperature (30 °C), results from the presence of 0.8 mM sulfate in the injection water. Inclusion of 2 mM nitrate to decrease souring results in zones of nitrate-reduction, sulfate-reduction, and methanogenesis along the injection water flow path. Microbial community analysis by pyrosequencing indicated dominant community members in each of these zones. Nitrate breakthrough was observed in 2-PW, a major water- and sulfide-producing well, after 4 years of injection. Sulfide concentrations at four other production wells (PWs) also reached zero, causing the average sulfide concentration in 14 PWs to decrease significantly. Interestingly, oil produced by 2-PW was depleted of toluene, the preferred electron donor for nitrate reduction. 2-PW and other PWs with zero sulfide produced 95% water and 5% oil. At 2 mM nitrate and 5 mM toluene, respectively, this represents an excess of electron acceptor over electron donor. Hence, continuous nitrate injection can change the composition of produced oil and nitrate breakthrough is expected first in PWs with a low oil to water ratio, because oil from these wells is treated on average with more nitrate than is oil from PWs with a high oil to water ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call