Abstract

The decomposition of toluene as a tar imitator in a gas composition similar to the gas after biomass pyrolysis was studied in a plasma–catalytic system. Nickel catalysts and the plasma from gliding arc discharge under atmospheric pressure were used. The effect of the catalyst bed, discharge power, initial toluene, and hydrogen concentration on C7H8 decomposition, calorific value, and unit energy consumption were studied. The gas flow rate was 1000 NL/h, while the inlet gas composition (molar ratio) was CO (0.13), CO2 (0.15), H2 (0.28–0.38), and N2 (0.34–0.44). The study was conducted using an initial toluene concentration in the range of 2000–4500 ppm and a discharge power of 1500–2000 W. In plasma–catalytic systems, the following catalysts were compared: NiO/Al2O3, NiO/(CaO-Al2O3), and Ni/(CaO-Al2O3). The decomposition of toluene increased with its initial concentration. An increase in hydrogen concentration resulted in higher activity of the Ni/(CaO-Al2O3) catalysts. The gas composition did not change by more than 10% during the process. Trace amounts of C2 hydrocarbons were observed. The conversion of C7H8 was up to 85% when NiO/(CaO-Al2O3) was used. The products of the toluene decomposition reactions were not adsorbed onto its surface. The calorific value was not changed during the process and was higher than required for turbines and engines in every system studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call