Abstract

Volatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.1–0.5g on a 50×50mm2 area, to evaluate their adsorption features with low gas concentrations. The morphology and chemical composition of the adsorbents were characterized using scanning electron microscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. Microwave irradiation and heat treatment near 800°C under KOH activation resulted in enlargement of the pristine graphene surface and its specific surface area; maximum volume capacities of 3510m3/g and 630m3/g were observed for toluene and acetaldehyde gas. The high removal efficiency for toluene (98%) versus acetaldehyde (30%) gas was attributed to π-π interactions between the pristine graphene surface and toluene molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call