Abstract

The metastable and thermodynamically favored phases of CuFeS2 are shown to be alternatively synthesized during partial cation exchange of hexagonal Cu2S using various phosphorus-containing ligands. Transmission electron microscopy and energy dispersive spectroscopy mapping confirm the retention of the particle morphology and the approximate CuFeS2 stoichiometry. Powder X-ray diffraction patterns and refinements indicate that the resulting phase mixtures of metastable wurtzite-like CuFeS2 versus tetragonal chalcopyrite are correlated with the Tolman electronic parameter of the tertiary phosphorus-based ligand used during the cation exchange. Strong L-type donors lead to the chalcopyrite phase and weak donors to the wurtzite-like phase. To our knowledge, this is the first demonstration of phase control in nanoparticle synthesis using solely L-type donors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call