Abstract

Recent studies have indicated that periodontopathic bacteria might accelerate the development of cardiac fibrosis. Porphyromonas gingivalis (P. gingivalis), a major periodontal bacterium, is mainly recognized by Toll-like receptor-2 (TLR-2). However, the role of TLR-2 in the acceleration of cardiac fibrosis via infections caused by periodontal bacteria has not yet been investigated. Here we investigated the role TLR-2 has in periodontal pathogen-induced cardiac fibrosis. TLR-2 knockout (KO) and wild type (WT) male C57BL/6 mice were subjected to a transverse aortic constriction (TAC) surgical procedure 2 weeks after chamber implantation. After the TAC operation, mice received injections once a week of P. gingivalis or vehicle into the chambers that were implanted in the back of mice. Fractional shortening (FS) was measured using echocardiography 1 week after the TAC surgical procedure. Four weeks after the TAC surgical procedure, blood and heart samples were collected. FS in the infected group of WT mice was significantly lower than in mice that received sham operations; however, FS in the uninfected group did not decrease in a similar manner to that in the infected group. Cardiac fibrosis was significantly enhanced in TAC-operated WT mice infected with P. gingivalis (n=14), whereas it was inhibited in TAC-operated TLR-2 KO mice infected with P. gingivalis (n=7). The level of matrix metalloproteinase-2 (MMP-2) mRNA was higher in WT mice infected with P. gingivalis compared with non-infected WT mice. However, the level of MMP-2 mRNA was significantly lower in TLR-2 KO mice compared with that in WT mice. In conclusion, TLR-2 had a critical role in the development of cardiac fibrosis under the conditions of pressure overload and periodontal pathogen infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.