Abstract

BackgroundLymphodepletion enhances adoptive T cell transfer (ACT) therapy by activating the innate immune system via microbes released from the radiation-injured gut. Microbial components, such as LPS, are key mediators of total body irradiation (TBI) enhancement, but our ability to strategically use these toll-like receptor (TLR) agonists to bolster the potency of T cell-based therapies for cancer remains elusive. Herein, we used TLR4 agonist LPS as a tool to address how and when to use TLR agonists to effectively improve cancer immunotherapy.MethodsTo determine the mechanisms of how innate immune activation via lymphodepletion potentiated antitumor T cell immunity, we utilized the pmel-1 melanoma mouse model. B16F10-bearing mice were preconditioned with 5Gy TBI and given a tripartite ACT therapy (consisting of transferred pmel-1 CD8+ T cells, vaccination with fowlpox encoding gp100, and IL-2) along with TLR4 agonist LPS. The timing of LPS administration and the requirement of individual components of the tripartite therapy were evaluated based on tumor growth and the phenotype of recovered splenocytes by flow cytometry. We also evaluated the role of non-toxic and clinically used TLR4 and TLR9 agonists—monophosphoryl lipid A (MPL) and CpG Oligodeoxynucleotide (CpG ODN), respectively— for ACT therapy.ResultsHere we report that while exogenous administration of LPS was able to enhance adoptively transferred CD8+ T cells’ tumor destruction, LPS treatment alone did not replace individual components of the tripartite ACT regimen, or obviate TBI. Moreover, we found that sequentially administering LPS during or one day prior to ACT therapy compromised tumor regression. In contrast, administering LPS after ACT potentiated the antitumor effectiveness of the regimen, thereby supporting the expansion of transferred tumor-specific CD8+ T cells over host CD4+ T cells. We also found that non-toxic TLR agonists MPL and CpG potentiated the antitumor activity of infused CD8+ T cells. Finally, TBI was no longer needed to regress tumors in mice who were depleted of host CD4+ T cells, given a tripartite ACT regimen and then treated with low dose LPS.ConclusionsCollectively, our results identify how and when to administer TLR agonists to augment T cell-based immunotherapy in the absence or presence of host preconditioning for treatment of advanced malignancies. Our findings have clinical implications for the design of next generation immune-based therapies for patients with cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s40425-016-0110-8) contains supplementary material, which is available to authorized users.

Highlights

  • Lymphodepletion enhances adoptive T cell transfer (ACT) therapy by activating the innate immune system via microbes released from the radiation-injured gut

  • Cells by activating DCs and ablating host lymphocytes Lymphodepletion with 5Gy total body irradiation (TBI) enhances a tripartite ACT treatment consisting of PFI (P = infusion of 1e6 pmel-1 CD8+ T cells, F = vaccination with fowlpox encoding hgp100 and I = high dose IL-2) in mice with B16F10 melanoma to a greater extent than in lymphoreplete mice (Fig. 1a)

  • We evaluated how lymphodepletion impacts the activation of the innate immune system and the degree of pmel-1 CD8+ T cell engraftment vs. host cell depletion

Read more

Summary

Introduction

Lymphodepletion enhances adoptive T cell transfer (ACT) therapy by activating the innate immune system via microbes released from the radiation-injured gut. Microbial components, such as LPS, are key mediators of total body irradiation (TBI) enhancement, but our ability to strategically use these toll-like receptor (TLR) agonists to bolster the potency of T cell-based therapies for cancer remains elusive. The deleterious effect of this phenomenon via chemo- and/or radiotherapy is beneficial for T cell-based treatments for cancer; including adoptive T cell transfer (ACT) therapy [11,12,13,14]. How lymphodepletion augments ACT in these various clinical trials has been elucidated in clinically relevant mouse models of melanoma

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call