Abstract

Plasmacytoid dendritic cells (PDCs) and their production of interferon-alpha (IFN-α) are believed to play an important role in human immunodeficiency virus, type I (HIV-1) pathogenesis. PDCs produce IFN-α and other proinflammatory cytokines through stimulation of Toll-like receptor 7 (TLR7) and TLR9 present in endosomal compartments. TLR7 recognizes single-stranded viral RNA, while TLR9 recognizes unmethylated DNA. In this study, we examined the mechanisms that may underlie variations in IFN-α production in response to HIV, and the impact of these variations on HIV pathogenesis. In four distinct cohorts, we examined PDC production of IFN-α upon stimulation with inactivated HIV-1 particles and unmethylated DNA. The signaling cascade of TLR7 bifurcates at the myeloid differentiation protein 88 (MyD88) adaptor protein to induce expression of either IFN-α or TNF-α. To determine whether variations in IFN-α production are modulated at the level of the receptor complex or downstream of it, we correlated production of IFN-α and TNF-α following stimulation of TLR7 or TLR9 receptors. Flow cytometry detection of intracellular cytokines showed strong, direct correlations between IFN-α and TNF-α expression in all four cohorts, suggesting that variations in IFN-α production are not due to variations downstream of the receptor complex. We then investigated the events upstream of TLR binding by using lipid-like vesicles to deliver TLR ligands directly to the TLR receptors, bypassing the need for CD4 binding and endocytosis. Similar tight correlations were found in IFN-α and TNF-α production in response to the TLR ligands. Taken together, these results strongly suggest that differences in IFN-α production depend on the regulatory processes at the level of the TLR7 receptor complex. Additionally, we found no association between IFN-α production before HIV infection and disease progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.