Abstract

BackgroundHypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury.MethodsOne day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining.ResultsTLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4 downregulation-mediated inhibition of inflammatory cytokines in primary microglia and BV-2 cells was accompanied by the suppression of NF-κB activation. Furthermore, HIF-1α antibody neutralization attenuated the increase of TLR4 expression in hypoxic BV-2 cells. TLR4 inhibition in vivo attenuated the immunoexpression of TNF-α, IL-1β and iNOS on microglia post-hypoxia.ConclusionActivated microglia TLR4 expression mediated neuroinflammation via a NF-κB signaling pathway in response to hypoxia. Hence, microglia TLR4 presents as a potential therapeutic target for neonatal hypoxia brain injuries.

Highlights

  • Hypoxia induces microglial activation which causes damage to the developing brain

  • Toll-like receptor 4 (TLR4) expression is increased in cerebral and cerebellar microglia after hypoxia exposure in neonatal rats To assess the role of TLR4 in microglia in the developing brain following a hypoxic injury, we first profiled the change in TLR4 expression in microglia in the corpus callosum and cerebellum, as well as cultured microglia subjected to hypoxia

  • Weak TLR4 expression was expressed in sporadic microglia but was increased in microglia 3 days after hypoxia (Figure 1A and B)

Read more

Summary

Introduction

Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Neuroinflammation, characterized by microglial activation, has been reported to play an important role in the hypoxic injuries in the neonatal brain [5,6]. Hypoxia-induced activation of AMCs is known to result in the production of excessive amounts of inflammatory cytokines, such as, TNF-α and IL-1β, along with nitric oxide (NO) and reactive oxygen species (ROS). They cause oligodendrocyte death and axonal degeneration, as well as disruption of the immature blood–brain-barrier (BBB) in the periventricular white matter (PWM), leading to neonatal mortality and long-term neurodevelopmental deficits [1,6,7,8]. Determination of the various mechanisms controlling microglial activation will play an important part in the suppression of neuroinflammation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call