Abstract

Stroke is the second to third leading cause of death. Toll-like receptor 4 (TLR4) is a signaling receptor in innate immunity that is a specific immunologic response to systemic bacterial infection and cerebral injury. The role of TLR4 in brain ischemia has not been examined yet. We have therefore investigated whether cerebral ischemia and inflammation produced by permanent occlusion of the middle cerebral artery differ in mice that lack a functional TLR4 signaling pathway. Permanent occlusion of the middle cerebral artery was performed on 2 strains of TLR4-deficient mice (C3H/HeJ and C57BL/10ScNJ) and respective controls (C3H/HeN and C57BL/10ScSn). Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected 24 hours and 7 days after stroke. When compared with control mice, TLR4-deficient mice had lower infarct volumes and better outcomes in neurological and behavioral tests. Mice that lacked TLR4 had minor expression of stroke-induced interferon regulatory factor-1, inducible nitric oxide synthase, and cyclooxygenase-2, mediators implicated in brain damage. The levels of interferon-beta and of the lipid peroxidation marker malondialdehyde were also lower in brains from TLR4-deficient mice than in those from control mice. In addition, the expression of matrix metalloproteinase-9, which is induced and mediates brain damage, was also reduced in TLR4-deficient mice after experimental stroke. TLR4-deficient mice have minor infarctions and less inflammatory response after an ischemic insult. These data demonstrate that TLR4 signaling and innate immunity are involved in brain damage and in inflammation triggered by ischemic injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.