Abstract

Host defense against microbial pathogens is elicited through the innate immune system by means of Toll-like receptors (TLRs). Airway smooth muscle cells (ASMCs) display proinflammatory and immunomodulatory functions. ASMCs might participate in airway inflammatory responses associated with innate immune activation. We determined the effects of cytokines, TLR ligands, and corticosteroids on TLR expression and function in human ASMCs. Real-time PCR and flow cytometry were used to assess TLR mRNA and protein expression, respectively. ASMCs were stimulated with TLR ligands, and chemokine release was measured by means of ELISA. ASMCs expressed TLR1 to TLR10 mRNA, and TLR2 and TLR3 protein expression was demonstrated. TNF-alpha and double-stranded RNA (dsRNA; TLR3 ligand) were potent inducers of TLR2 and TLR3 mRNA expression, and both stimuli had additive or synergistic effects with IFN-gamma on TLR2 and TLR4, but not TLR3, mRNA expression. Peptidoglycan (TLR2 ligand) and LPS (TLR4 ligand) weakly enhanced TLR2 mRNA expression. Peptidoglycan, dsRNA, and LPS induced IL-8 and eotaxin release, with dsRNA being most potent. dsRNA also modulated cytokine-induced chemokine release in a differential manner. Dexamethasone inhibited cytokine- and ligand-induced TLR2, TLR3, and TLR4 expression and chemokine release. However, dexamethasone potentiated TLR2 expression induced by combined IFN-gamma and TNF-alpha stimulation. Expression of TLR2, TLR3, and TLR4 is regulated by cytokines and TLR ligands, and their activation mediates chemokine release in ASMCs. Proinflammatory responses mediated by activation of pathogen-recognition receptors in ASMCs might contribute to infectious exacerbations of airway inflammatory conditions, such as asthma and chronic obstructive pulmonary disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.