Abstract

Toll-like receptors (TLRs) mediate cellular responses to diverse microbial ligands. The distribution and function of TLRs in airway cells were studied to identify which are available to signal the presence of inhaled pathogens and to establish if differences in TLR expression are associated with the increased proinflammatory responses seen in cystic fibrosis (CF). Isogenic, polarized CF and control bronchial epithelial cell lines, human airway cells in primary culture, and cftr null and wild-type mice were compared. TLRs 1-10, MD2, and MyD88 were expressed in CF and normal cells. Only TLR2 transcription was modestly increased in CF as compared with normal epithelial cells following bacterial stimulation. TLR2 was predominantly at the apical surface of airway cells and was mobilized to cell surface in response to bacteria. TLR4 was present in a more basolateral distribution in airway cells, but appeared to have a limited role in epithelial responses. Lipopolysaccharide failed to activate nuclear factor-kappaB in these cells, and TLR2 dominant negative but not TLR4 dominant negative mutants inhibited activation by both Gram-negative and Gram-positive bacteria. Increased availability of TLR2 at the apical surfaces of CF epithelial cells is consistent with the increased proinflammatory responses seen in CF airways and suggests a selective participation of TLRs in the airway mucosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.