Abstract

BackgroundHuman cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide. The toll-like receptors (TLRs) have been reported as important factors in immune response against HCMV. Particularly, TLR2, TLR4 and TLR9 have been shown to be involved in antiviral immunity. Evaluation of the role of single nucleotide polymorphisms (SNPs), located within TLR2, TLR4 and TLR9 genes, in the development of human cytomegalovirus (HCMV) infection in pregnant women and their fetuses and neonates, was performed.MethodsThe study was performed for 131 pregnant women, including 66 patients infected with HCMV during pregnancy, and 65 age-matched control pregnant individuals. The patients were selected to the study, based on serological status of anti-HCMV IgG and IgM antibodies and on the presence of viral DNA in their body fluids. Genotypes in TLR2 2258 A > G, TLR4 896 G > A and 1196 C > T and TLR9 2848 G > A SNPs were determined by self-designed nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in TLR SNPs, were confirmed by sequencing. A relationship between the genotypes, alleles, haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women and their offsprings, was determined, using a logistic regression model.ResultsGenotypes in all the analyzed polymorphisms preserved the Hardy-Weinberg equilibrium in pregnant women, both infected and uninfected with HCMV (P > 0.050). GG homozygotic and GA heterozygotic status in TLR9 2848 G > A SNP decreased significantly the occurrence of HCMV infection (OR 0.44 95% CI 0.21–0.94 in the dominant model, P ≤ 0.050). The G allele in TLR9 SNP was significantly more frequent among the uninfected pregnant women than among the infected ones (χ2 = 4.14, P ≤ 0.050). Considering other polymorphisms, similar frequencies of distinct genotypes, haplotypes and multiple-SNP variants were observed between the studied groups of patients.ConclusionsTLR9 2848 G > A SNP may be associated with HCMV infection in pregnant women.

Highlights

  • Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide

  • Prevalence of anti-HCMV IgG and IgM antibodies In pregnant women, HCMV infection during pregnancy was estimated on the basis of IgG seroconversion within gestation, on the presence of IgG and IgM specific antibodies or on a low IgG avidity index

  • Control group in the study, consisted of pregnant women seronegative for both IgG and IgM antibodies against HCMV, who were classified as uninfected individuals

Read more

Summary

Introduction

Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide. The toll-like receptors (TLRs) have been reported as important factors in immune response against HCMV. Evaluation of the role of single nucleotide polymorphisms (SNPs), located within TLR2, TLR4 and TLR9 genes, in the development of human cytomegalovirus (HCMV) infection in pregnant women and their fetuses and neonates, was performed. Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide, with seroprevalence rates at the range from 40 to 100% among pregnant women [1,2,3,4]. Taking into account the immune response to HCMV, the Toll-like receptors (TLRs) have been reported to play important role [13,14,15]. A study performed for neonatal human fibroblasts, showed some involvement of TLR9 in the development of HCMV infection as well [23]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.