Abstract

Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns and signal through adaptor molecules, myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain containing adaptor protein (TIRAP), Toll/IL-1 receptor domain containing adaptor inducing interferon-beta (TRIF), and TRIF-related adaptor molecule (TRAM) to activate transcription factors, nuclear factor (NF)-kappaB, activator protein 1 (AP-1), and interferon regulatory factors (IRFs) leading to the initiation of innate immunity. This system promptly initiates host defenses against invading microorganisms. Endogenous TLR ligands such as the products from dying cells may also engage with TLRs as damage-associated molecular patterns. Although Kupffer cells are considered the primary cells to respond to pathogen associated molecular patterns in the liver, recent studies provide evidence of TLR signaling in hepatic nonimmune cell populations, including hepatocytes, biliary epithelial cells, endothelial cells, and hepatic stellate cells. This review highlights advances in TLR signaling in the liver, the role of TLRs in the individual hepatic cell populations, and the implication of TLR signaling in acute and chronic liver diseases. We further discuss recent advances regarding cytosolic pattern recognition receptors, RNA helicases that represents a new concept in chronic hepatitis C virus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call