Abstract

The innate immune system is essential in the protection against microbial infection and facilitating tissue repair mechanisms. During these stresses, the maintenance of innate immune cell numbers through stress-induced or emergency hematopoiesis is key for our survival. One major mechanism to recognize danger signals is through the activation of Toll-like receptors (TLRs) on the surface of hematopoietic cells, including hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC), and nonhematopoietic cells, which recognize pathogen-derived or damaged-induced compounds and can influence the emergency hematopoietic response. This review explores how direct pathogen-sensing by HSC/HPC regulates hematopoiesis, and the positive and negative consequences of these signals. Recent studies have highlighted new roles for TLRs in regulating HSC and HPC differentiation to innate immune cells of both myeloid and lymphoid origin and augmenting HSC and HPC migration capabilities. Most interestingly, new insights as to how acute versus chronic stimulation of TLR signaling regulates HSC and HPC function has been explored. Recent evidence suggests that TLRs may play an important role in many inflammation-associated diseases. This suggests a possible use for TLR agonists or antagonists as potential therapeutics. Understanding the direct effects of TLR signaling by HSC and HPC may help regulate inflammatory/danger signal-driven emergency hematopoiesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.