Abstract

IntroductionToll-like receptor (TLR) 7 is an important mediator in inflammation. However, its role in hyperoxia-induced acute lung injury (HALI) remains to be elucidated. MethodsC57BL/6 wild-type and C57BL/6 background TLR 7 deficiency mice were exposed to hyperoxia to stimulate HALI in airtight cages. Animals were sacrificed at 72 h post hyperoxia or room air exposure. Lung injury indicators were measured. Moreover, soluble epoxide hydrolase (sEH) activity was detected by a 14, 15-EET/DHET ELISA kit. Activation of activator protein (AP)-1 and nuclear factor kappa-B (NF-κB) was detected with enzyme linked immunosorbent assay kits. ResultsOur data revealed that pulmonary histological assay and wet to dry weight ratio, myeloperoxidase and malondialdehyde activity were reduced in TLR 7 deficiency mice compared with wild-type mice. Moreover, hyperoxia–caused elevation of sEH activity was reduced in TLR 7 deficiency mice. Transcription factors AP-1 activation was significantly inhibited in TLR 7 deficiency mice compared with wild-type mice. Similarly, the activation of NF-κB was reduced in TLR 7 deficiency mice. Tumor necrosis factor-α and interleukin-1β, potent proinflammatory cytokines, were reduced in TLR 7 deficiency mice. ConclusionTLR 7 deficiency is associated with inhibition of inflammation in HALI in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.