Abstract

Macrophage foam cells formation is the most important process in atherosclerotic plaque formation and development. Toll-like receptor 4 (TLR4) is one of the important innate immune sensors of endogenous damage signals and crucial for regulating inflammation. Growing evidence indicates that TLR4 plays a very important role in macrophage foam cells formation. However, the underlying mechanisms regulating TLR4 expression in macrophage are not fully understood. In this study, we induced THP-1 macrophage foam cells formation with oxidative modified low-density lipoprotein (ox-LDL). We observed that TLR4 mRNA and protein expression were markedly up-regulated, and the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream target p70S6K were promoted during foam cells formation. The mTOR inhibitor rapamycin blocked mTOR phosphorylation and inhibited TLR4 expression induced by ox-LDL. Silencing mTOR, rictor or raptor protein expression by small interfering RNA, also inhibited the up-regulation of TLR4 expression, respectively. Inhibition of mTOR with rapamycin reversed the down-regulation of cellular lipid efflux mediator ABCA1, which resulted from the activation of TLR4 by ligands. These data suggested that TRL4 expression was up-regulated by a mechanism dependent on mTOR signal pathway activation during THP-1 macrophage foam cells formation. Inhibition of ox-LDL induced mTOR activation reduced TLR4 expression, and improved the impaired lipid efflux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.