Abstract
Innate immunity plays important roles in host defense against pathogens, but may also contribute to the development of autoimmune diseases under certain conditions. Toll-like receptors (TLRs) recognize various pathogens and induce innate immunity. We herein present a mouse model for chronic pancreatitis, which was induced by TLR3 signaling that generated the Fas/Fas ligand (FasL)-mediated cytotoxicity. An analogue of viral double-stranded RNA, polyinosinic:polycytidylic acid (poly I:C), which is recognized by TLR3, was injected into autoimmune-prone strains: MRL/Mp mice (MRL/+), MRL/Mp mice with a deficit of Fas (MRL/lpr) and MRL/Mp mice with a deficit of functional FasL (MRL/gld). The pancreatitis in MRL/+ mice was initiated by the destruction of pancreatic ductules, and its severity was significantly higher than that in MRL/lpr mice or MRL/gld mice. Using a pancreatic duct epithelial cell line MRL/S-1 newly established from the MRL/gld mouse that lacks FasL, we showed that treatment with poly I:C significantly induced the expression of Fas on the cultured cells. MRL/S-1 cells were destructed when co-cultured with splenocytes bearing intact FasL prepared from MRL/+ or MRL/lpr mice, but the magnitude of cytotoxicity was smaller with splenocytes of MRL/gld mice. Likewise, synthetic FasL protein showed cytotoxicity on MRL/S-1 cells. Furthermore, MRL/S-1 cells expressed higher levels of chemokines after the treatment with poly I:C, suggesting that the poly I:C-mediated induction of chemokines may be responsible for recruitment of lymphoid cells to the pancreatic periductular regions. These findings indicate that TLR3 signaling generates the Fas/FasL-mediated cytotoxicity, thereby leading to the development of chronic pancreatitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.