Abstract

BackgroundMultiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders.ResultsNewly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV.ConclusionsTLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS.

Highlights

  • Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain

  • In this study we investigated the effects of a wide range of TLR ligands, including potent TLR2 agonist molecules purified from Mycobacterium tuberculosis (Mtb), on the reactivation of pro-viral HIV in a novel human model of latently-infected microglial cells

  • Characterization of hμglia/HIV (HC01) and (HC69) cells The HIV latently-infected cells used in this study were derived from simian virus 40 large T antigen (SV40Tag)/human telomerase reverse transcriptase-immortalized human microglial cell lines prepared as described by Garcia-Mesa et al [40]

Read more

Summary

Introduction

Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. Additional cell types, including peripheral blood monocytes, dendritic cells and macrophages in the lymph node, and astrocytes, perivascular macrophages and microglial cells in the brain, can be infected with HIV and can potentially contribute to viral persistence [4,5,6,7,8]. It has been speculated that once infected, monocyte–macrophage lineage cells are more resistant to certain anti-retroviral drugs and the cytopathic and apoptotic effects of HIV than T cells, and can harbor actively replicating viruses for longer periods even under conditions of effective suppression by HAART. Detection of viral escape mutations in the cerebrospinal fluid of individuals under HAART with undetectable viral presence in blood supports this hypothesis [16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call