Abstract
It has been suggested that Toll-like receptor (TLR)4 promotes IL-10-mediated cardiac cell survival, whereas another receptor, TLR2, from the same family, is detrimental. Here, we examined the interactive role of these two innate signaling molecules under stressful conditions, including IL-10 knockout (IL-10-/-) mice, global ischemia-reperfusion (I/R) injury in rat hearts, and in vitro short hairpin RNA experimental models in the presence or absence of IL-10 (10 ng/ml). Circulating and myocardial levels of TNF-α as well as apoptosis and fibrosis were higher in IL-10-/- mice. The increase in TLR2 in IL-10-/- hearts indicated its negative regulation by IL-10. Ex vivo I/R also caused a marked upregulation of TLR2 and TNF-α as well as apoptotic and fibrotic signals. However, a 40-min reperfusion with IL-10 triggered an increase in TLR4 expression and improved recovery of cardiac function. The increase in IL-1 receptor-associated kinase (IRAK)-M and IRAK-2 activity during I/R injury suggested their role in TLR2 signaling. In vitro inhibition of TLR4 activity as a consequence of RNA inhibition-mediated suppression of myeloid differentiation gene (MyD)88 suggested MyD88-dependent activation of TLR4. The inclusion of IL-10 during reperfusion also downregulated the expression of IRAK-2, TNF-α receptor-associated factor 1-interacting protein (TRAIP) and apoptotic signals, caspase-3, and the Bax-to-Bcl-xL ratio. IL-10 reduced the TNF-α receptor-associated increase in TRAIP-induced apoptosis during I/R injury, which led to an increase in IL-1β to mitigate transforming growth factor-β receptor type I-mediated fibrosis. The IL-10 mitigation of these changes suggests that the stimulation through TLR4 signaling promotes IRAK-4 and phosphorylates IRAK-1 instead of IRAK-2 and may be an important therapeutic approach in restoring heart health in stress.NEW & NOTEWORTHY Under stress conditions such as downregulation of the IL-10 gene or ischemia-reperfusion injury, Toll-like receptor (TLR)4 and IL-1 receptor-associated kinase (IRAK)-1 activation is suppressed, along with the upregulation of TLR-2 and IRAK-2, resulting in fibrosis and apoptosis. It is suggested that IL-10 helps to maintain heart function during stress via myeloid differentiation gene 88/IRAK-4/IRAK-1-dependent TLR4 signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.