Abstract

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity to Chlamydia include those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators. There is evidence that TLR3, TLR4, and, particularly, TLR2 are critical for Chlamydia-mediated host cell activation and pathology. Despite the importance of TLR2, major chlamydial TLR2 antigens have not been identified so far. Numerous bacterial porins are known TLR2 agonists, i.e., porins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, which share structural and functional similarities with the chlamydial major outer membrane protein (MOMP), a strong antigen candidate for a potential vaccine against C. trachomatis. We describe the ability of purified, detergent-free MOMP to signal via TLR2 in vitro in TLR-overexpressing cells and TLR2-competent human reproductive tract epithelial cell lines. Using MOMP formed in pure protein micelles (proteosomes), we show the induction of TLR2-dependent interleukin-8 (IL-8) and IL-6 secretion in vitro, the involvement of TLR1 as a TLR2 coreceptor, and the activation of both NF-κB and mitogen-activated protein (MAP) kinase intracellular pathways. Interestingly, MOMP proteosomes induce cytokine secretion in endocervical epithelial cells (End/E6E7) but not in urethral epithelial cells (THUECs). A detailed understanding of the TLR2-dependent molecular mechanisms that characterize the effect of MOMP proteosomes on host cells may provide new insights for its successful development as an immunotherapeutic target against Chlamydia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.