Abstract
We previously reported that infection by Fusobacterium nucleatum strongly induced the expression of both human beta-defensin 2 (HBD-2) and HBD-3 by gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptors (PRRs) and regulatory mechanisms involved in the induction of HBD-2 and -3 expression by F. nucleatum in gingival epithelial cells. Immortalized human gingival epithelial HOK-16B cells were infected with live or heat-killed F. nucleatum, and the expression of HBDs and interleukin-8 (IL-8) was examined by real-time reverse transcription-PCR and enzyme-linked immunosorbent assay, respectively. Live, but not heat-killed, F. nucleatum invaded HOK-16B cells, as seen by confocal microscopy and flow cytometry. Live F. nucleatum induced both HBD-2 and -3 efficiently, whereas heat-killed bacteria induced only HBD-3 at a reduced level. Knockdown of NACHT-LRR- and pyrin domain-containing protein 2 (NALP2), the most abundant intracellular PRR in HOK-16B cells, by RNA interference (RNAi) significantly reduced the induction of HBD-3 but not HBD-2 and IL-8. In addition, knockdown of Toll-like receptor 2 (TLR2) by RNAi reduced the upregulation of HBD-2 and -3 but not IL-8. Heat-killed F. nucleatum was hindered in its ability to activate TLR2 and JNK signaling pathways. Theses data show that TLR2 and NALP2 mediate the induction of HBDs by F. nucleatum in gingival epithelial cells, but thresholds for the two HBD genes are different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.