Abstract

Neurons of the owl's nucleus laminaris serve as coincidence detectors for measurement of interaural time difference. The discharge rate of nucleus laminaris neurons for both monaural and binaural stimulation increased with sound intensity until they reached an asymptote. Intense sounds affected neither the ratio between binaural and monaural responses nor the interaural time difference for which nucleus laminaris neurons were selective. Theoretical analysis showed that high afferent discharge rates cause coincidence detectors with only excitatory input to lose their selectivity for interaural time difference when coincidence of impulses from the same side becomes as likely as that of impulses from the two sides. We hypothesize that inhibitory input whose strength increases with sound intensity protects nucleus laminaris neurons from losing their sensitivity to interaural time difference with intense sounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.