Abstract

Estuaries are subject to anthropogenic activities. Because the intrasedimentary worm Nereis diversicolor has ecological characteristics and bioindicator abilities, its use was pertinent in investigating the concepts and cost of tolerance to heavy metals (Cd, Cu, Zn). In this context, two approaches were carried out, performing toxicity tests and estimating energy reserves (glycogen and lipids), in populations originating from a contaminated site (Seine estuary) compared with those from a clean site (Authie estuary). Mean lethal times (LT(50)s) of organisms exposed to zinc from the Seine estuary were higher than those from the Authie estuary, but not of organisms exposed to Cd or Cu. The influence of animal weight and salinity on the sensitivity of worms also was studied. The biggest worms were more tolerant to zinc than the smallest ones, and worms survived longer at a reduced salinity (15 per thousand). Concentrations of glycogen and lipids in each sampling season were higher in specimens from the Authie estuary than in worms from the Seine estuary. No influence of salinity on glycogen and lipid levels was observed. Glycogen concentrations were not influenced by the weight of specimens, whereas lipid concentrations were significantly and positively correlated with weight. In conclusion, worms from the Seine estuary exhibited tolerance to Zn, and the depletion of energy reserves observed in this population could be interpreted as a cost of tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call