Abstract

A tolerance synthesis model is established based on degree of freedom of geometric variations of features in this paper. The method allows a designer to analyze the relationship between geometric variations of features of a part and functional requirement of assembly (FRA). Firstly, tolerance is modeled with DOFs of geometric variations of features and the tolerance zone is expressed with six kinematic DOFs in three-dimensional (3D) space. Secondly, the stack-up of geometric variations of features is formulated as explicit tolerance analysis equations using kinematical coordinate systems associated with each feature. To express mathematically the relationship between given FRA values and the corresponding DOFs of geometric variations of features, the reverse synthesis equations are obtained using a matrix inversion scheme of the tolerance analysis equations. Finally, a case study is used to illustrate the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.