Abstract

AbstractPopulations that tolerate extreme environmental conditions with frequent fluctuations can give valuable insights into physiological limits and adaptation. In some estuarine and marine ecosystems, organisms must adapt to extreme and fluctuating salinities, but not much is known about how varying salinities impact local adaptation across a wide geographic range. We used eight geographically and genetically divergent populations of the intertidal copepod Tigriopus californicus to test whether northern populations have greater tolerance to low salinity stresses, as they experience greater precipitation and less evaporation. We used a common-garden experiment approach and exposed all populations to acute low (1 and 3 ppt) and high (110 and 130 ppt) salinities for 24 h and to a fluctuation between baseline salinity and moderate low (7 ppt) and high (80 ppt) salinities for over 49 h. We also performed RNA sequencing at several time points during the fluctuation between baseline and salinity of 7 ppt to understand the molecular basis of divergence between two populations with differing physiological responses. We present these novel findings: (1) acute low salinity conditions caused more deaths than high salinity; (2) molecular processes that elevate proline levels increased in salinity of 7 ppt, which contrasts with other physiological studies in T. californicus that mainly associated accumulation of proline with hyperosmotic stress; and (3) tolerance to a salinity fluctuation did not follow a latitudinal trend but was instead governed by a complex interplay of factors, including population and duration of salinity stress. This highlights the importance of including a wider variety of environmental conditions in empirical studies to understand local adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.