Abstract

Computed tomography (CT) data are required to calculate the dose distribution in a patient’s body. Generally, there are two CT number calibration methods for commercial radiotherapy treatment planning system (RTPS), namely CT number‐relative electron density calibration (CT‐RED calibration) and CT number‐mass density calibration (CT‐MD calibration). In a previous study, the tolerance levels of CT‐RED calibration were established for each tissue type. The tolerance levels were established when the relative dose error to local dose reached 2%. However, the tolerance levels of CT‐MD calibration are not established yet. We established the tolerance levels of CT‐MD calibration based on the tolerance levels of CT‐RED calibration. In order to convert mass density (MD) to relative electron density (RED), the conversion factors were determined with adult reference computational phantom data available in the International Commission on Radiological Protection publication 110 (ICRP‐110). In order to validate the practicability of the conversion factor, the relative dose error and the dose linearity were validated with multiple RTPSes and dose calculation algorithms for two groups, namely, CT‐RED calibration and CT‐MD calibration. The tolerance levels of CT‐MD calibration were determined from the tolerance levels of CT‐RED calibration with conversion factors. The converted RED from MD was compared with actual RED calculated from ICRP‐110. The conversion error was within ±0.01 for most standard organs. It was assumed that the conversion error was sufficiently small. The relative dose error difference for two groups was less than 0.3% for each tissue type. Therefore, the tolerance levels for CT‐MD calibration were determined from the tolerance levels of CT‐RED calibration with the conversion factors. The MD tolerance levels for lung, adipose/muscle, and cartilage/spongy‐bone corresponded to ±0.044, ±0.022, and ±0.045 g/cm3, respectively. The tolerance levels were useful in terms of approving the CT‐MD calibration table for clinical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.