Abstract

Induction of mixed chimerism is currently the most promising concept for clinical tolerance induction; however, the toxicity of the required host conditioning for allogeneic bone marrow transplantation (BMT) should be overcome. Therefore, we explored tolerogenic effectiveness of megadose BMT with anti-CD45RB and anti-CD154 mAb (two-signal blockade) in murine recipients without conditioning. Recipient B6 mice of BALB/c skin allograft received conditioning and an optimal dose (2x10(7) cells) of BMT. For a megadose BMT model, the conditioning was not performed; instead, megadose (2x10(8) cells) of BM was transplanted. The recipients were then treated with anti-CD45RB mAb and anti-CD154 mAb alone or their combination. Flow cytometry was performed to analyze the degree and distribution of donor-derived cells, peripheral deletion of Vbeta5 or Vbeta11 T cells and intrathymic presence of donor MHC class II+ cells. Induction of chimerism-based tolerance to skin allograft was further determined. High levels ( approximately 23.7%) of mixed and multi-lineage chimerism-based tolerance to skin allograft were induced in the recipients (91%) treated with the optimal-dose BMT and the two-signal blockade. The megadose BMT could replace the recipient conditioning and establish low (approximately 10%) and stable multilineage chimerism. Donor-specific tolerance to skin allograft was induced in these chimeras through clonal deletion of donor-reactive cells. The megadose BMT with the two-signal blockade could effectively establish mixed and multi-lineage chimerism and induce donor-specific tolerance, suggesting its potential for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.