Abstract

Organisms that regulate nutrient intake have an advantage over those that do not, given that the nutrient composition of any one resource rarely matches optimal nutrient requirements. We used nutritional geometry to model protein and carbohydrate intake and identify an intake target for a sexually dimorphic species, the Wellington tree weta (Hemideina crassidens). Despite pronounced sexual dimorphism in this large generalist herbivorous insect, intake targets did not differ by sex. In a series of laboratory experiments, we then investigated whether tree weta demonstrate compensatory responses for enforced periods of imbalanced nutrient intake. Weta pre-fed high or low carbohydrate: protein diets showed large variation in compensatory nutrient intake over short (<48 h) time periods when provided with a choice. Individuals did not strongly defend nutrient targets, although there was some evidence for weak regulation. Many weta tended to select high and low protein foods in a ratio similar to their previously identified nutrient optimum. These results suggest that weta have a wide tolerance to nutritional imbalance, and that the time scale of weta nutrient balancing could lie outside of the short time span tested here. A wide tolerance to imbalance is consistent with the intermittent feeding displayed in the wild by weta and may be important in understanding weta foraging patterns in New Zealand forests.

Highlights

  • The nutritional composition of foods rarely matches the nutritional requirements of an organism

  • We investigated nutrient intake target and consumption in a sexually dimorphic cricket the Wellington tree weta (Hemideina crassidens), using the geometric framework for nutrition [24,25]

  • In the first phase of this experiment, tree weta in the control group selected a protein:carbohydrate ratio that was neither significantly different from the target ratio established in the initial experiment with wild weta, nor from the 1:1 ratio expected if weta were eating equal amounts of the two foods (One-sample Wilcoxon Signed Rank Test, p = 0.445 and p = 0.647, respectively; Figure 3)

Read more

Summary

Introduction

The nutritional composition of foods rarely matches the nutritional requirements of an organism. Nutrients in plants that are important for animal growth, such as protein, vary both temporally and spatially, as do characteristics such as digestibility and secondary metabolites [1,2]. The ratio of protein to digestible carbohydrate in plants is likely to determine feeding patterns in herbivores, influencing foraging rates and strategies and other aspects of performance [3]. Generalist herbivores tend to be both mobile and selective [4], moving widely to encounter suitable foods and avoid nutrient limitation. They frequently switch between foods, but are likely to eat large amounts of imbalanced foods [5,6]. Many organisms have a demonstrated ability to select combinations of complementary foods that individually are nutritionally imbalanced, but together allow an animal to reach its multidimensional intake target [2,7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.