Abstract

In order to help understand the structural stability of KCoO2-type ternary nitrides AMN2, referring to perovskite structure, a tolerance factor t is proposed to describe the size effect on the phase/symmetry options of the experimentally accessible AMN2 nitrides. This leads to a range of t values above 0.946 for structurally stable KCoO2-type AMN2 nitrides with t values around 0.970 for the orthorhombic and tetragonal phase boundary. In contrast, most of AMN2 nitrides exhibit α-NaFeO2-type structure with t ∼ 0.898-0.946 and cations ordered or disordered rocksalt structure while t below 0.898. Employing the proposed criterion, the structure formation for other ternary AMN2 compositions with lanthanum and alkaline earth cations for the A sites were predicted, which was testified through the synthesis attempts and complemented by formation energy evaluations. The efforts to synthesize the ternary Lanthanide and alkaline earth-based AMN2 nitrides were unsuccessful, which could associate the structural instability with the large formation energies of lanthanide nitrides LaMN2 and the greater tolerance factor of 1.048 for BaTiN2. The experimentally already synthesized AMN2 nitrides could be categorized into three types with different tolerance factors, and scarce AMN2 nitrides with lower formation energies would be accessible using different synthetic routes beyond the traditional solid-state synthesis method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.