Abstract

Recent investigations have shown that microinjections of non-opioid analgesics, nonsteroidal anti-inflammatory drugs, NSAIDs, into some brain areas, particularly, into the midbrain periaqueductal gray matter (PAG) and rostral ventro-medial medulla (RVM), cause antinociception with some effects of tolerance. Our preliminary findings have also shown the same effects of tolerance after intraperitoneal injections. The present study was designed to examine whether microinjections of metamizole (Analgin), ketorolac, and xefocam into the central nucleus of the amygdala (Ce) lead to the development of tolerance in rats, and to ascertain whether this nucleus is the pain-modulating pathway through PAG. Our investigation revealed that microinjections of NSAIDs into the Ce both unilaterally (the left side) and bilaterally produced antinociception, as indicated by a latency increase in tail-flick reflex (TF) compared to controls with saline, on the first experimental day for Analgin (P < 0.001), ketorolac (P < 0.001), and xefocam (P < 0.001). However, when these drug microinjections were repeated during subsequent days, the antinociceptive effects progressively diminished so that on the fifth experimental day the TF latency was similar to that in the rats that received repeated injections of only saline. These results show that, alongside with PAG and RVM, the Ce is an important site of the endogenous antinociceptive system, which triggers the descending pain control mechanism and thus inhibits nociceptive transmission. On the other hand, our data confirm the results of other authors that NSAIDs are closely related to endogenous opioids, and tolerance to these non-opioid drugs probably depends on opioid tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call