Abstract

BackgroundBio-conversion of lignocellulosic biomass to high-value products offers numerous benefits; however, its development is hampered by chemical inhibitors generated during the pretreatment process. A better understanding of how microbes naturally respond to those inhibitors is valuable in the process of designing microorganisms with improved tolerance. Pseudomonas taiwanensis VLB120 is a natively tolerant strain that utilizes a wide range of carbon sources including pentose and hexose sugars. To this end, we investigated the tolerance and metabolic response of P. taiwanensis VLB120 towards biomass hydrolysate-derived inhibitors including organic acids (acetic acid, formic acid, and levulinic acid), furans (furfural, 5-hydroxymethylfurfural), and phenols (vanillin).ResultsThe inhibitory effect of the tested compounds varied with respect to lag phase, specific growth rate, and biomass yield compared to the control cultures grown under the same conditions without addition of inhibitors. However, P. taiwanensis was able to oxidize vanillin and furfural to vanillic acid and 2-furoic acid, respectively. Vanillic acid was further metabolized, whereas 2-furoic acid was secreted outside the cells and remained in the fermentation broth without further conversion. Acetic acid and formic acid were completely consumed from the fermentation broth, while concentration of levulinic acid remained constant throughout the fermentation process. Analysis of free intracellular metabolites revealed varying levels when P. taiwanensis VLB120 was exposed to inhibitory compounds. This resulted in increased levels of ATP to export inhibitors from the cell and NADPH/NADP ratio that provides reducing power to deal with the oxidative stress caused by the inhibitors. Thus, adequate supply of these metabolites is essential for the survival and reproduction of P. taiwanensis in the presence of biomass-derived inhibitors.ConclusionsIn this study, the tolerance and metabolic response of P. taiwanensis VLB120 to biomass hydrolysate-derived inhibitors was investigated. P. taiwanensis VLB120 showed high tolerance towards biomass hydrolysate-derived inhibitors compared to most wild-type microbes reported in the literature. It adopts different resistance mechanisms, including detoxification, efflux, and repair, which require additional energy and resources. Thus, targeting redox and energy metabolism in strain engineering may be a successful strategy to overcome inhibition during biomass hydrolysate conversion and lead to development of more robust strains.

Highlights

  • Bio-conversion of lignocellulosic biomass to high-value products offers numerous benefits; its development is hampered by chemical inhibitors generated during the pretreatment process

  • P. taiwanensis VLB120 showed high tolerance towards biomass hydrolysatederived inhibitors compared to most wild-type microbes reported in the literature

  • The overall results suggest that the tested inhibitors affect P. taiwanensis VLB120 physiology in various ways with respect to lag phase, specific growth rate, and biomass yield

Read more

Summary

Introduction

Bio-conversion of lignocellulosic biomass to high-value products offers numerous benefits; its development is hampered by chemical inhibitors generated during the pretreatment process. Pseudomonas taiwanensis is an obligate aerobe, biofilmforming organism that was isolated from soil at the Institute of Microbiology, University of Stuttgart, Germany [1,2,3,4] It can thrive in diverse habitats, and is known for its ability to colonize soil and participate in soil biochemical processes [5, 6]. Unlike other industrially relevant Pseudomonas putida strains, such as P. putida KT2440, P. putida DOT-T1E, and P. putida S12, P. taiwanensis VLB120 is the only known Pseudomonas strain that is able to utilize xylose as the sole carbon and energy source without any genetic modifications [2] These remarkable features of P. taiwanensis emphasize its potential for the production of high-value products, such as n-butanol from low-cost renewable feedstocks through rational metabolic engineering as shown in a variety of heterologous microorganisms, including those cultivated aerobically such as P. putida [9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.