Abstract

This study aimed to investigate the potential accumulation of mycotoxins in the lesser mealworm (Alphitobius diaperinus, LMW) and black soldier fly (Hermetia illucens, BSF) larvae. Feed was spiked with aflatoxin B1, deoxynivalenol (DON), ochratoxin A or zearalenone, and as a mixture of mycotoxins, to concentrations of 1, 10, and 25 times the maximum limits set by the European Commission for complete feed. This maximum limit is 0.02 mg/kg for aflatoxin B1, 5 mg/kg for DON, 0.5 mg/kg for zearalenone and 0.1 mg/kg for ochratoxin A. The mycotoxins and some of their metabolites were analysed in the larvae and residual material using a validated and accredited LC-MS/MS-based method. Metabolites considered were aflatoxicol, aflatoxin P1, aflatoxin Q1, and aflatoxin M1, 3-acetyl-DON, 15-acetyl-DON and DON-3-glycoside, and α- and β-zearalenol. No differences were observed between larvae reared on mycotoxins individually or as a mixture with regards to both larvae development and mycotoxin accumulation/excretion. None of the mycotoxins accumulated in the larvae and were only detected in BSF larvae several orders of magnitude lower than the concentration in feed. Mass balance calculations showed that BSF and LMW larvae metabolized the four mycotoxins to different extents. Metabolites accounted for minimal amounts of the mass balance, except for zearalenone metabolites in the BSF treatments, which accounted for an average maximum of 86% of the overall mass balance. Both insect species showed to excrete or metabolize the four mycotoxins present in their feed. Hence, safe limits for these mycotoxins in substrates to be used for these two insect species possibly could be higher than for production animals. However, additional analytical and toxicological research to fully understand the safe limits of mycotoxins in insect feed, and thus the safety of the insects, is required.

Highlights

  • Nowadays, insects are considered a promising alternative protein source for use in feed and food applications in Europe

  • This study investigated the potential accumulation and/or excretion of the mycotoxins aflatoxin B1 (AfB1), DON, ZEN. and ochratoxin A (OTA) in insect larvae of the lesser mealworm (Alphitobius diaperinus, LMW) and the black soldier fly (Hermetia illucens, BSF) reared on feed spiked with single mycotoxins and on feed spiked with a mixture of the four mycotoxins

  • This is the first study investigating the potential accumulation/excretion of LMW for ZEN and OTA. It is the first controlled study investigating the fate of a mixture of mycotoxins—AfB1, DON, ZEN, and OTA—relative to the single mycotoxins when feeding these insect larvae with contaminated feed

Read more

Summary

Introduction

Insects are considered a promising alternative protein source for use in feed and food applications in Europe. Larvae of Alphitobius diaperinus (lesser mealworms, LMW) and Hermetia illucens (black soldier flies, BSF) are considered a sustainable source of high-quality protein and certain vitamins and minerals and are amongst the insect species gaining most interest for feed and food applications [1]. Within Europe, maximum limits (ML) have been set for the presence of various chemical contaminants in a range of animal feeds, human food products and ingredients [2]. These include, amongst others, ML for the presence of the mycotoxin aflatoxin B1 (AfB1) in animal feed [3] and human food products [2], and guidance levels for several other mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), ochratoxin A (OTA), and fumonisin B1 /B2 , T-2/HT-2 toxins, in animal feed [4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.