Abstract
Primarily, lithium (Li) resource development and wider application of Li-ion batteries result in Li pollution and concomitantly poses increasing and inevitable problems to environmental health and safety. However, information is rare about the scope of the remediation of Li contaminated soil. Apocynum venetum is already proved to be a Li-accumulator with high Li tolerance and accumulation (Jiang et al., 2014). However, it is not clear whether Apocynum pictum, another species of the same genus with the same uses as A. venetum, is also a Li-accumulator. We investigated germination, growth and physiological responses of A. pictum to different levels of LiCl. Germination was not significantly affected by low Li concentration (0–100 mmol L−1). As LiCl increased from 100 to 400 mmol L−1, both germination percentage and index decreased gradually. For germination of A. pictum seeds, the critical value (when germination percentage is 50%) in LiCl solution was 235 mmol L−1, and the limit value (when germination percentage is 0%) was 406 mmol L−1. A. pictum could accumulate >1,800 mg kg−1 Li in leaves, and still survived under 400 mg kg-1 Li supply. The high Li tolerance of A. pictum during germination and growth stage was also reflected by activity of α-amylase and contents of soluble sugar, proline and photosynthetic pigments under different Li treatments. The bioconcentration factors (BCF) (except control) and translocation factors (TF) were higher than 1.0. High tolerance and accumulation of Li indicated that A. pictum is Li-accumulator. Therefore, this species could be useful for revegetation and phytoremediation of Li contaminated soil.
Highlights
Lithium (Li), the lightest alkali metal, is normally present in trace amounts in the environment (Shahzad et al, 2017)
Germination percentage and index of A. pictum seeds were significantly affected by LiCl
Germination percentages of A. pictum seeds were reduced from 91% to 6% under 0–400 mmol L−1 LiCl (Fig. 1A)
Summary
Lithium (Li), the lightest alkali metal, is normally present in trace amounts in the environment (Shahzad et al, 2017). In the consideration of Li toxicity and its impact on health and environment, several remediation methods have been proposed to reduce its toxicity and remediate Li contaminated soil These approaches include: (1) identification and use of Li tolerant genotypes, accumulator and hyperaccumulator; (2) organic matter addition to soils; (3) application of chelators or chaperones; (4) Ex-situ and in-situ immobilization techniques; (5) soil stabilization and solidification (Shahzad et al, 2016). Among these methods, phytoremediation is inexpensive and can reduce secondary pollution compared with traditional physical and chemical approaches (Cluis, 2004; Franzaring et al, 2016). Screening some Li-accumulating plant species is the first step to remediate Li-contaminated soil using phytoremediation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.