Abstract

This paper analyzes array pattern tolerance against excitation errors. The nonprobabilistic interval analysis algorithm is used for tolerance analysis of the nonideal uniform linear array in this work. Toward this purpose, corresponding interval models of the power pattern functions are established, respectively, with the consideration of the amplitude errors, phase errors, or both simultaneously, in antenna arrays. The tolerance for the amplitude-phase error of the main function parameters including the beamwidth, sidelobe level, and the directivity is simulated by computer according to the indicators and the actual requirements. Accordingly, the worst admissible performance of an array can be evaluated, which may provide theoretical reference for optimal antenna array design. As for the problem of array synthesis in the presence of various array errors, interval analysis-convex programming (IA-CP) is presented. Simulation results show that the proposed IA-CP based synthesis technique is robust for the amplitude and phase errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.