Abstract

Due to the high carrier mobility, graphene is considered a promising material for use in high-speed electronic devices in the post-silicon electronic era. Graphene high resistance to radiation and extreme temperatures makes the development of graphene-based electronics a key-enabling technology for aerospace, defence, and aeronautical applications. Nevertheless, achieving uniform device-to-device performance is still a challenge, and these fields require high reliability components. In particular, many critical issues remain to be solved, such as their reproducibility and guaranty of identical performances against possible variations of different manufacturing and environmental factors. In the present work, a model capable to take into account the physical characteristics linked to the production process of a Graphene Field-Effect Transistor (GFET) is exploited to carry out a tolerance analysis of process-related geometrical parameters on the device performance. The most influential parameters that affect the device behaviour are studied in order to enhance the fabrication yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.