Abstract
Suppose given two of the following: a set L1 of start words, a set L2 of target words, and a control set C of finite sequences of applications of a given finite set of homomorphisms (or finite substitutions) which map L1 into L2. Using notions from OL systems, the present paper investigates what can be said about the remaining set in case the given sets are regular. When the start and target sets are regular, the set of all control words turns out to be regular. (This is true even when the regularity assumption on the start set is removed.) When a regular target set L2 and a regular control set C are given, the set of all words map ped into L2 by C is regular. (This result remains true even when the regularity assumption on C is removed.) When a regular start set L and a regular control set C are given, the set C(L) is an ETOL language. In fact, this characterizes ETOL languages. Finally, it is shown that the set ∋(∑) of all possible homomorphisms (or the set C(∑) of all finite substitutions) from a given alphabet ∑ into itself cannot be a control set. In other words, neither of the semigroups ∋(∑) or C(∑) is finitely generated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.