Abstract

Designing the secure and privacy-protected smart power contract between electricity suppliers and consumers, considered agents, of different microgrids, is a challenging task in the networked- microgrid system. A framework is suggested in which each microgrid implements a heterogeneous or isomorphic blockchain based platform. The blockchain interoperability, inherently, is present in different blockchains implemented by various microgrids. This paper reviews the interoperability issues and smart contract designs in blockchain based systems. The paper proposes new mechanisms to cater blockchain interoperability challenges to facilitate the design of secure and seamless smart contracts among different blockchains of microgrids. A network hub of heterogeneous or isomorphic blockchains of network microgrids has been created. A methodology has been developed to transfer tokens between interoperable blockchains. Distributed identity-based microgrid (DIBM) scheme is incorporated to make the networked microgrid system secure and trustworthy. This paper suggests an effective consensus protocol for cross-chain architecture that improves the tokenization system and smart power contract designs. For simulation purposes, MATLAB and python programming have been used with real-time data of microgrids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call