Abstract

The statistical data association technique is an important approach to analyse long sequences of images in computer vision. Although it has extensively been studied in other domains, such as radar imagery, it was introduced only recently in computer vision, and is already recognized as an efficent approach to solving correspondence and motion problems. This paper has two purposes. The first is to present a general formulation of token tracking. The parameterization of tokens is not addressed. This might be useful to those who are not familiar with statistical tracking techniques. The second is to introduce some strategies for tracking with emphasis on practical importance. They include beam search for resolving multiple matches, support of existence for discarding false matches, and locking on reliable tokens and maximizing local rigidity for handling combinatorial explosion. We have implemented those strategies in a 3D line segment tracking algorithm and found them very useful.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.