Abstract
The strong, sharp flow structures that are seen frequently in tokamak cores, and large amplitude spontaneous global toroidal rotation are both surprising in light of current theories where toroidal flow evolution is dominantly diffusive. Mechanisms for spontaneously generating strong poloidal shear flows have been extensively investigated, but these processes were thought not to apply to toroidal flows. We confirm, however, that there is a regime with near-zero toroidal momentum diffusivity, where toroidal flow structures are spontaneously generated, as shown in earlier global gyrokinetic simulations. This allows strong rotation with negligible applied external torque, and the regime where this occurs is also favourable for strong turbulence stabilisation by rotation. The transition to low momentum diffusivity occurs for tight aspect ratio, low safety factor and at low levels of heat flux, in agreement with a simple zero-dimensional model for the flow–turbulence interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Plasma Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.