Abstract
A halo current flows for part of its path through the plasma edge and for part through the chamber walls and can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components. Two discordant constraints are central to the theory: (1) Halo currents must produce the magnetic field distribution required to maintain plasma force balance—a distribution that depends on the two angular coordinates of a torus. (2) Halo currents must flow along the magnetic field lines in the plasma, which implies a dependence on a linear combination of the two angular coordinates—only one angular coordinate is free. The physics basis of these two constraints is explained as is their application to the calculation of the properties of halo currents, such as their broad toroidal spectrum. Existing codes could be used to (1) provide detailed comparisons with experiments to validate that the critical elements of physics are adequately included, (2) allow more complete predictions for future machines such as ITER, and (3) design shunts and resistive elements to ensure halo currents follow paths that are the least damaging to the machine. The physics of halo currents implies that it may be possible to feedback stabilize resistive wall modes beyond the ideal-wall limit.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.